The Sourdough School

Baking eating and sharing bread to improve physical and mental health

Using a robust evidence-based baking protocol combining the evidence of thousands of years of baking with modern clinical insights, we offer comprehensive training to bakers and healthcare professionals, providing students with the tools to use baking in everyday practice as a wellness intervention.
Follow on Instagram

Soil Association
Our gardens are certified organic.

Baking as Lifestyle Medicine for Bakers and Clinicians

+44(0)7707 480336
[email protected]
Follow on Instagram
  • Facebook
  • Instagram
  • Pinterest
  • Twitter

Student Login

Navigation
  • Home
    • Login
  • About us
    • The School
    • Contact Us & FAQ
    • The Team
    • Contributors & Guest Tutors
    • General FAQ’s about The School
    • Be the Change
  • Admissions
    • Courses
    • Course Q&A’s
    • Graduation Week in Tuscany
    • Educational Awards Programme
    • Enrolment
    • Reviews
    • Student Welfare
    • Policies & Compliance
  • The Certificate
    • The Certificate
    • Teaching
    • Teacher Training
  • The Diploma
    • The Diploma
    • Licence to Prescribe BALM
  • BALM
    • Baking as Lifestyle Medicine
    • What is BALM?
    • BALM & Bread in The Blue Zone
    • Case Studies Library
    • BALM Podcasts
  • Shop
    • Books
    • Equipment
    • Ingredients

129 - ‘The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions’. Applied and Environmental Microbiology. Volume 80, 15, 4702–4716

Reference Number: 129

Year: 2014

Authors: Philipp Adler, Lasse Jannis Frey, Antje Berger, Christoph Josef Bolten, Carl Erik Hansen, Christoph Wittmann

Lactic Acid Bacteria: Prevalence

Summary

Summary

Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as pri- mary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. In- deed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacte- ria and yeasts were both present.

Qualify in Baking as Lifestyle Medicine

All reasonable care is taken when writing about health aspects of bread, but the information it contains is not intended to take the place of treatment by a qualified medical practitioner. You must seek professional advice if you are in any doubt about any medical condition. Any application of the ideas and information contained on this website is at the reader's sole discretion and risk.

  • Facebook
  • Instagram
  • Pinterest
  • Twitter

Email Sign Up

Terms and Conditions | Privacy Policy
Copyright © 2023 Vanessa Kimbell
Call +44 (0)1604 881274 | Email [email protected]
Registered in England & Wales: 08412236
Website by Callia Web