The Sourdough School

Baking eating and sharing bread to improve physical and mental health

Using a robust evidence-based baking protocol combining the evidence of thousands of years of baking with modern clinical insights, we offer comprehensive training to bakers and healthcare professionals, providing students with the tools to use baking in everyday practice as a wellness intervention.
Follow on Instagram

Soil Association
Our gardens are certified organic.

Baking as Lifestyle Medicine for Bakers and Clinicians

+44(0)7707 480336
[email protected]
Follow on Instagram
  • Facebook
  • Instagram
  • Pinterest
  • Twitter

Student Login

Navigation
  • Home
    • Login
  • About us
    • The School
    • Contact Us & FAQ
    • The Team
    • Contributors & Guest Tutors
    • General FAQ’s about The School
    • Be the Change
  • Admissions
    • Courses
    • Course Q&A’s
    • Graduation Week in Tuscany
    • Educational Awards Programme
    • Enrolment
    • Reviews
    • Student Welfare
    • Policies & Compliance
  • The Certificate
    • The Certificate
    • Teaching
    • Teacher Training
  • The Diploma
    • The Diploma
    • Licence to Prescribe BALM
  • BALM
    • Baking as Lifestyle Medicine
    • What is BALM?
    • BALM & Bread in The Blue Zone
    • Case Studies Library
    • BALM Podcasts
  • Shop
    • Books
    • Equipment
    • Ingredients

75 - ‘The Central Nervous System and the Gut Microbiome’. Cell. 3;167(4)

Reference Number: 75

Year: 2016

Authors: Sharon G, Sampson TR, Geschwind DH, Mazmanian SK

Link: Link to original paper

Health: Gut Microbiome - Creating Healthier Bread to Support Optimal Gut Health | Mental Health

Summary

Summary

Neurodevelopment is a complex process governed by both intrinsic and extrinsic signals. While historically studied by researching the brain, inputs from the periphery impact many neurological conditions. Indeed, emerging data suggests communication between the gut and the brain in anxiety, depression, cognition and autism spectrum disorder (ASD). The development of a healthy, functional brain depends on key pre- and post-natal events that integrate environmental cues, such as molecular signals from the gut. These cues largely originate from the microbiome, the consortium of symbiotic bacteria that reside within all animals. Research over the past few years reveals that the gut microbiome plays a role in basic neurogenerative processes such as the formation of the blood-brain-barrier, myelination, neurogenesis, and microglia maturation, and also modulates many aspects of animal behavior. Herein, we discuss the biological intersection of neurodevelopment and the microbiome, and explore the hypothesis that gut bacteria are integral contributors to development and function of the nervous system, and the balance between mental health and disease.

 

SIGNIFICANCE OF THIS STUDY

The microbiome plays a significant role in the well-being of its host. While much of the research on this topic to date has demonstrated that different bacterial populations are associated with certain clinical conditions, it is unclear for the most part whether these differences are causative, promote and/or enhance disease, or instead are a consequence of otherwise unrelated pathophysiology. Future research should tackle this challenging question in order to understand the intricate interaction between mammals (or any other host) and their associated microbial community. We must not continue exercises in simply cataloging bacterial populations. Rather, we must extend this foundational research approach to test the functional and ecological roles that a given microbial population plays, as well as decipher the physiological effects individual bacteria or consortia of bacteria have on their animal hosts. It is of importance to address questions of cause and effect: are changes in the microbiome underlying the pathophysiology or are they a result thereof? Are the effects on behavior direct, or a result of other fundamental physiological changes? Are there defined microbial features that are necessary and sufficient to support proper neurodevelopment and prevent neurodegeneration? The use of animal models is a great tool for studying basic processes in health and disease. However, we must use caution in extrapolating results to the human condition, and strive to use preclinical findings as one of several approaches to inform human health and disease.While research on the gut-brain axis is still in relative infancy, certain basic rules have begun to emerge. It appears as though specific neurological pathways evolved to respond to the effect of microbial population, while others are unaffected by microbiome “instruction” and subject to purely genomic or other environmental cues. Interaction with host-associated microbial communities, either directly via microbial metabolites or indirectly by the immune, metabolic or endocrine systems, can supply the nervous system with real-time information about the environment. These cues converge to control basic developmental processes in the brain such as barrier function, immune surveillance, and neurogenesis. The mechanistic understanding of how different microbial populations, beneficial or pathogenic, govern these and other functions related to health and disease holds promise in the diagnosis, treatment, and prevention of specific neuropathologies. Determining how a microbiome, changing with Westernization and other environmental factors, impacts a human population with growing rates of neurodevelopmental disorders and increasing life expectancy represents an urgent challenge to biomedical research, and to society.

 

Qualify in Baking as Lifestyle Medicine

All reasonable care is taken when writing about health aspects of bread, but the information it contains is not intended to take the place of treatment by a qualified medical practitioner. You must seek professional advice if you are in any doubt about any medical condition. Any application of the ideas and information contained on this website is at the reader's sole discretion and risk.

  • Facebook
  • Instagram
  • Pinterest
  • Twitter

Email Sign Up

Terms and Conditions | Privacy Policy
Copyright © 2023 Vanessa Kimbell
Call +44 (0)1604 881274 | Email [email protected]
Registered in England & Wales: 08412236
Website by Callia Web